

 Navigation

 	
 index

 	
 next |

 	django-gollum 1.0.0 documentation

Welcome to django-gollum

This is django-gollum, a better way to mess with styling Django forms. gollum provides a better way to specify just the HTML Attributes and CSS classes you need on a Form subclass.

Installation

To install django-gollum, just use:

pip install django-gollum

Dependencies

	
	Python version

	
	django-gollum is tested on Python 2.7 and Python 3.3.

	It is probable that it will run on Python 2.6, but Python 2.6 is not
explicitly tested.

	
	Django version

	
	django-gollum is tested against Django 1.4+ on Python 2.7, and Django
1.5+ on Python 3.3.

	
	Other dependencies

	
	dict.sorted [https://github.com/lukesneeringer/dict-sorted.git]

	six [https://pythonhosted.org/six/]

All dependencies are handled for you if you install using pip.

Getting Started

Adding HTML or CSS to a Django Form with gollum is easy:

	Subclass gollum.forms.Form or gollum.forms.ModelForm.

	Add a Attrs or CSS inner class specifying fields with extra HTML attributes or CSS, respectively.

Here’s an example:

from gollum import forms

class MyForm(forms.Form):
 foo = models.CharField(max_length=50)
 bar = models.IntegerField()

 class Attrs:
 bar = { 'placeholder': 25 }

 class CSS:
 foo = 'green'
 bar = ['purple', 'translucent']

When this form is rendered in the template, the “foo” <input> tag will have the “green” CSS class applied, and the “bar” <input> will have both “purple” and “translucent” applied. Additionally, the “bar” <input> would have placeholder="25" set as an HTML attribute.

Getting Help

If you think you’ve found a bug in django-pgfields itself, please post an
issue on the Issue Tracker [https://github.com/lukesneeringer/django-gollum/issues].

For usage help, you’re free to e-mail the author, who will provide help (on
a best effort basis) if possible.

License

New BSD

Index

	Using django-gollum

	Specifying HTML Attributes
	In Form Classes

	In Templates

	CSS

	Specifying CSS Classes
	In Form Classes

	In Templates

	Settings
	FORM_REQUIRED_CSS_CLASS

	FORM_ERROR_CSS_CLASS

	FORM_GLOBAL_CSS_CLASS

	FORM_REQUIRED_ATTRS

	FORM_OPTIONAL_ATTRS

	FORM_GLOBAL_ATTRS

 Copyright 2013, Luke Sneeringer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-gollum 1.0.0 documentation

Using django-gollum

In order to use gollum, you must use gollum’s Form and ModelForm
superclass, rather than the ones that ship with Django.

This is extremely important: nothing documented here will work unless
the gollum Form classes are superclasses of your form. This also gives
you the ability to opt-in to gollum forms on an as-needed basis, if you
prefer.

The easiest way to do this is just to import your forms module from
gollum rather than django:

from gollum import forms

class MyGollumForm(forms.Form):
 [...]

It’s that simple. Read on to learn how to make use of what gollum provides.
The next topic is specifying HTML attributes.

 Copyright 2013, Luke Sneeringer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-gollum 1.0.0 documentation

Specifying HTML Attributes

In Form Classes

gollum gives you the ability to specify HTML attributes easily on a form
class. You can specify HTML attributes on any number of fields on your form
by using an Attrs inner class within your form:

from gollum import forms

class MyGollumForm(forms.Form):
 foo = forms.IntegerField()
 bar = forms.IntegerField()

 class Attrs:
 foo = { 'disabled': 'true' }

The above code will cause the form, when rendered, to add a disabled="true"
HTML attribute to the foo field (but do nothing to the bar field).

A common use-case for this, if you’re using HTML5 forms, is to set a
placeholder attribute [http://davidwalsh.name/html5-placeholder]. This causes the browser to display default text
in the input field until it gains focus:

from gollum import forms

class UserForm(forms.Form):
 first_name = forms.CharField(max_length=30)
 last_name = forms.CharField(max_length=30)
 email = forms.EmailField(max_length=75)
 phone = forms.CharField(max_length=15, required=False)

 class Attrs:
 phone = { 'placeholder': 'Optional' }

This code would cause the phone widget to look like this:

<input name="phone" id="id_phone" type="text" placeholder="optional">

In Templates

Even though the Django documentation only exposes a way to set attributes
in form widgets themselves [https://docs.djangoproject.com/en/1.5/ref/forms/widgets/#django.forms.Widget.attrs], one could argue that a better place for
HTML attribute information to live is in the template itself, especially
since a form could be used in different templates and need different
attributes set.

gollum does not expose a special mechanism to do this (yet). However, this
can be accomplished by directly calling the as_widget method of
a bound field in Django.

The problem: as_widget takes arguments, so you’ll either need to write
a template tag to send the necessary arguments to it, or use a template
language that supports arguments (such as Jinja [http://jinja.pocoo.org/]).

Here’s a quick sample of the latter option:

{% for field in user_form %}
 {{ field.as_widget(attrs={ 'placeholder': field.label }) }}
{% endfor %}

This method allows you not to specify HTML attributes on your form class at
all, and may be preferable, especially if the HTML attributes change depending
on where the form is rendered.

CSS

It would be possible to specify CSS classes in this way, by writing directly
to the class HTML attribute. But don’t; gollum also exposes a way to
specify CSS classes.

 Copyright 2013, Luke Sneeringer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-gollum 1.0.0 documentation

Specifying CSS Classes

Much like HTML attributes, gollum provides a way to specify CSS classes
both in forms and also exposes a new way to do so in templates.

However, unlike HTML attributes, where the most recent attribute specified
wins, the CSS class specification understands to take the union of any CSS
classes sent to it. That makes it preferable to use this mechanism rather
than specifying class as an HTML attribute directly.

In Form Classes

In order to specify a CSS class on a form, declare a CSS inner class
in your Form class, and specify any classes to apply:

from gollum import forms

class MyForm(forms.Form):
 foo = models.CharField(max_length=50)
 bar = models.IntegerField()

 class CSS:
 foo = {'spam', 'eggs'}

The above code, when rendered in an template, will cause the <input> tag
for the foo field to have two CSS classes: spam and eggs.

You can specify CSS classes here using a list, set, or tuple. You can also
use a string if you have only one CSS class, or you can even use a
space-separated string like you would in actual HTML markup.

The following CSS inner-class is identical to the one in the example above:

class CSS:
 foo = 'spam eggs'

Order of class specification doesn’t matter; it’ll be normalized to a
Python set, which is unordered. Duplicate classes don’t matter either,
for the same reason.

In Templates

It may be preferable for your use case to specify CSS classes in templates
rather than in the form itself. (This does seem like where such information
naturally belongs.)

Again, like in HTML Attributes, the solution is
the as_widget method. The story’s a little different this time, though:
Django doesn’t provide a clean way to specify CSS classes, so gollum
actually subclasses BoundField to provide one.

That mechanism is the css_classes keyword argument:

{% for field in form %}
 {{ field.as_widget(css_classes='myclass') }}
{% endfor %}

Much like the specification above, you can send a list (or other, similar
iterable) or a string, and gollum will do the right thing.

 Copyright 2013, Luke Sneeringer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	django-gollum 1.0.0 documentation

Settings

gollum exposes a small number of settings that you can apply to get
certain global behaviors on gollum forms.

FORM_REQUIRED_CSS_CLASS

	Default: (not set)

	Type: str

If specified, the given CSS class will be added to every required field
on every gollum form.

FORM_ERROR_CSS_CLASS

	Default: (not set)

	Type: str

If specified, the given CSS class will be added to every field that is
in an error state on every gollum form.

FORM_GLOBAL_CSS_CLASS

	Default: (not set)

	Type: str

If specified, the given CSS class will be added to every field, period,
the end.

FORM_REQUIRED_ATTRS

	Default: (not set)

	Type: dict

If specified, the given HTML attributes will be applied to every required
field on every gollum form.

Example:

FORM_REQUIRED_ATTRS = { 'required': 'true' }

FORM_OPTIONAL_ATTRS

	Default: (not set)

	Type: dict

If specified, the given HTML attributes will be applied to every field
that is not required on any gollum form.

Example:

FORM_OPTIONAL_ATTRS = { 'placeholder': 'Optional' }

FORM_GLOBAL_ATTRS

	Default: (not set)

	Type: dict

If specified, the given HTML attributes will be applied to every form
field on every gollum form.

 Copyright 2013, Luke Sneeringer.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-gollum 1.0.0 documentation

Index

 Copyright 2013, Luke Sneeringer.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		django-gollum 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Luke Sneeringer.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

